3.645 \(\int \frac{\sqrt{c x}}{(3 a-2 a x^2)^{3/2}} \, dx\)

Optimal. Leaf size=101 \[ \frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}+\frac{\sqrt{3-2 x^2} \sqrt{c x} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-\sqrt{6} x}}{\sqrt{6}}\right )\right |2\right )}{6^{3/4} a \sqrt{x} \sqrt{3 a-2 a x^2}} \]

[Out]

(c*x)^(3/2)/(3*a*c*Sqrt[3*a - 2*a*x^2]) + (Sqrt[c*x]*Sqrt[3 - 2*x^2]*EllipticE[ArcSin[Sqrt[3 - Sqrt[6]*x]/Sqrt
[6]], 2])/(6^(3/4)*a*Sqrt[x]*Sqrt[3*a - 2*a*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0393555, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {290, 320, 319, 318, 424} \[ \frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}+\frac{\sqrt{3-2 x^2} \sqrt{c x} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-\sqrt{6} x}}{\sqrt{6}}\right )\right |2\right )}{6^{3/4} a \sqrt{x} \sqrt{3 a-2 a x^2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c*x]/(3*a - 2*a*x^2)^(3/2),x]

[Out]

(c*x)^(3/2)/(3*a*c*Sqrt[3*a - 2*a*x^2]) + (Sqrt[c*x]*Sqrt[3 - 2*x^2]*EllipticE[ArcSin[Sqrt[3 - Sqrt[6]*x]/Sqrt
[6]], 2])/(6^(3/4)*a*Sqrt[x]*Sqrt[3*a - 2*a*x^2])

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 320

Int[Sqrt[(c_)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[c*x]/Sqrt[x], Int[Sqrt[x]/Sqrt[a + b*x^2
], x], x] /; FreeQ[{a, b, c}, x] && GtQ[-(b/a), 0]

Rule 319

Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (b*x^2)/a]/Sqrt[a + b*x^2], Int[Sqrt[x]/Sqr
t[1 + (b*x^2)/a], x], x] /; FreeQ[{a, b}, x] && GtQ[-(b/a), 0] &&  !GtQ[a, 0]

Rule 318

Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Dist[-2/(Sqrt[a]*(-(b/a))^(3/4)), Subst[Int[Sqrt[1 - 2*x^
2]/Sqrt[1 - x^2], x], x, Sqrt[1 - Sqrt[-(b/a)]*x]/Sqrt[2]], x] /; FreeQ[{a, b}, x] && GtQ[-(b/a), 0] && GtQ[a,
 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{c x}}{\left (3 a-2 a x^2\right )^{3/2}} \, dx &=\frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}-\frac{\int \frac{\sqrt{c x}}{\sqrt{3 a-2 a x^2}} \, dx}{6 a}\\ &=\frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}-\frac{\sqrt{c x} \int \frac{\sqrt{x}}{\sqrt{3 a-2 a x^2}} \, dx}{6 a \sqrt{x}}\\ &=\frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}-\frac{\left (\sqrt{c x} \sqrt{1-\frac{2 x^2}{3}}\right ) \int \frac{\sqrt{x}}{\sqrt{1-\frac{2 x^2}{3}}} \, dx}{6 a \sqrt{x} \sqrt{3 a-2 a x^2}}\\ &=\frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}+\frac{\left (\sqrt{c x} \sqrt{1-\frac{2 x^2}{3}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-2 x^2}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\sqrt{\frac{2}{3}} x}}{\sqrt{2}}\right )}{2^{3/4} \sqrt [4]{3} a \sqrt{x} \sqrt{3 a-2 a x^2}}\\ &=\frac{(c x)^{3/2}}{3 a c \sqrt{3 a-2 a x^2}}+\frac{\sqrt{c x} \sqrt{3-2 x^2} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-\sqrt{6} x}}{\sqrt{6}}\right )\right |2\right )}{6^{3/4} a \sqrt{x} \sqrt{3 a-2 a x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0143966, size = 58, normalized size = 0.57 \[ \frac{2 x \left (3-2 x^2\right )^{3/2} \sqrt{c x} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};\frac{2 x^2}{3}\right )}{9 \sqrt{3} \left (a \left (3-2 x^2\right )\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c*x]/(3*a - 2*a*x^2)^(3/2),x]

[Out]

(2*x*Sqrt[c*x]*(3 - 2*x^2)^(3/2)*Hypergeometric2F1[3/4, 3/2, 7/4, (2*x^2)/3])/(9*Sqrt[3]*(a*(3 - 2*x^2))^(3/2)
)

________________________________________________________________________________________

Maple [B]  time = 0.02, size = 227, normalized size = 2.3 \begin{align*} -{\frac{1}{72\,{a}^{2}x \left ( 2\,{x}^{2}-3 \right ) }\sqrt{cx}\sqrt{-a \left ( 2\,{x}^{2}-3 \right ) } \left ( 2\,\sqrt{2}\sqrt{ \left ( 2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}\sqrt{ \left ( -2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}\sqrt{3}\sqrt{-x\sqrt{2}\sqrt{3}}{\it EllipticE} \left ( 1/6\,\sqrt{3}\sqrt{2}\sqrt{ \left ( 2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}},1/2\,\sqrt{2} \right ) -\sqrt{2}\sqrt{ \left ( 2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}\sqrt{ \left ( -2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}\sqrt{3}\sqrt{-x\sqrt{2}\sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{2}\sqrt{3}}{6}\sqrt{ \left ( 2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}},{\frac{\sqrt{2}}{2}} \right ) +24\,{x}^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(1/2)/(-2*a*x^2+3*a)^(3/2),x)

[Out]

-1/72*(c*x)^(1/2)*(-a*(2*x^2-3))^(1/2)*(2*2^(1/2)*((2*x+2^(1/2)*3^(1/2))*2^(1/2)*3^(1/2))^(1/2)*((-2*x+2^(1/2)
*3^(1/2))*2^(1/2)*3^(1/2))^(1/2)*3^(1/2)*(-x*2^(1/2)*3^(1/2))^(1/2)*EllipticE(1/6*3^(1/2)*2^(1/2)*((2*x+2^(1/2
)*3^(1/2))*2^(1/2)*3^(1/2))^(1/2),1/2*2^(1/2))-2^(1/2)*((2*x+2^(1/2)*3^(1/2))*2^(1/2)*3^(1/2))^(1/2)*((-2*x+2^
(1/2)*3^(1/2))*2^(1/2)*3^(1/2))^(1/2)*3^(1/2)*(-x*2^(1/2)*3^(1/2))^(1/2)*EllipticF(1/6*3^(1/2)*2^(1/2)*((2*x+2
^(1/2)*3^(1/2))*2^(1/2)*3^(1/2))^(1/2),1/2*2^(1/2))+24*x^2)/a^2/x/(2*x^2-3)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x}}{{\left (-2 \, a x^{2} + 3 \, a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(1/2)/(-2*a*x^2+3*a)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x)/(-2*a*x^2 + 3*a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-2 \, a x^{2} + 3 \, a} \sqrt{c x}}{4 \, a^{2} x^{4} - 12 \, a^{2} x^{2} + 9 \, a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(1/2)/(-2*a*x^2+3*a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-2*a*x^2 + 3*a)*sqrt(c*x)/(4*a^2*x^4 - 12*a^2*x^2 + 9*a^2), x)

________________________________________________________________________________________

Sympy [C]  time = 1.35031, size = 51, normalized size = 0.5 \begin{align*} \frac{\sqrt{3} \sqrt{c} x^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{3}{2} \\ \frac{7}{4} \end{matrix}\middle |{\frac{2 x^{2} e^{2 i \pi }}{3}} \right )}}{18 a^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(1/2)/(-2*a*x**2+3*a)**(3/2),x)

[Out]

sqrt(3)*sqrt(c)*x**(3/2)*gamma(3/4)*hyper((3/4, 3/2), (7/4,), 2*x**2*exp_polar(2*I*pi)/3)/(18*a**(3/2)*gamma(7
/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x}}{{\left (-2 \, a x^{2} + 3 \, a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(1/2)/(-2*a*x^2+3*a)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x)/(-2*a*x^2 + 3*a)^(3/2), x)